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ABSTRACT 

Supersonic flow past two oscillating airfoils is 

analyzed in the thesis using an analytical elementary 

theory valid for low frequencies of oscillation. The 

airfoils may have arbitrary stagger angle. This 

approach generalizes Sauer's solution for a single 

airfoil oscillating at small frequencies in an 

unbounded supersonic flow. 

It is shown that this generalization can provide 

an elementary theory for supersonic flow past two 

oscillating airfoils. This aerodynamic tool will 

facilitate the calculation of pressure distribution and 

consequently the calculation of moment coefficient. 

Torsional flutter boundaries are computed. The results 

for the pitch damping coefficient are the same when 

compared with previous analysis. For arbitrary 

frequencies a linearized method of characteristics was 

outlined. 

The elementary theory that has been developed in 

the thesis can be used for flutter evaluation of 

aircraft carrying external stores. The result of the 

thesis is the derivation of the pitch damping 

coefficient which is necessary to predict the flutter 

conditions. 
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I. INTRODUCTION 

Aeroelasticity is the study of the effect of aerodynamic forces on elastic bodies. One 

of the interesting problems in aeroelasticity is the stability of a structure in wind. Since for a 

given configuration of the elastic body, the aerodynamic force increases rapidly with the wind 

speed while the elastic stiffness is independent of the wind, there may exist a critical wind 

speed at which die structure becomes unstable. Such instability could create excessive 

deformation and failure of the structure. A particular problem is the FLUTTER of structures, 

which is a self-excited vibration phenomenon. 

Flutter is caused by the interaction of all three forces: aerodynamic, elastic and inertia!. 

Consider as an example a cantilever wing mounted in a wind tunnel (with the root rigidly built 

in). Suppose the wing is deliberately deflected and then released. At sufficiently low wind 

speed, the oscillation that follows this disturbance will quickly die out. However, at some 

higher wind speed one observes a steady oscillation, which maintains itself. This is the critical 

flutter speed for the wing. At higher speeds, the oscillation will be rapidly divergent causing 

structural failure. 

When large external bodies such as engine nacelles, fuel tanks, or electronic warfare 

pods are added to the wing of an aircraft, the dynamic characteristics of an aircraft will be 

changed. Over the last several decades, there has been considerable interest in the calculation 

of the unsteady aerodynamic forces on aircraft. Many of the methods presently in use for 

numerical calculations involve application of a two-dimensional theory to solve three- 

dimensional flow problems. Most of these methods do not have the ability to model an 

arbitrarily shaped aircraft. However, with certain assumptions, it is possible to simplify the 

flow problems to adequately account for the effects of unsteady aerodynamic forces on aircraft 

components. Unfortunately, the transonic flight regime still makes it very difficult to determine 

the unsteady aerodynamic forces because of the nonlinear shock and flow separation effects, 

which occur in this flight regime. 

A good example for the requirement of the wing/stores flutter analysis is the fighter 

aircraft. 



Fighter aircraft are commonly designed for a primary mission, such as air superiority, 

which may require few, if any, wing-mounted external stores. However, for increased 

effectiveness and versatility, many secondary missions evolve which are necessary and require 

the use of a variety of external stores. Thus, many combinations of these external stores must 

be carried at various stations on the wings to achieve the complex, multi-role missions required 

by the operational commands. Sometimes, the wing stores are not available to the aircraft 

manufacturer even during the production of an aircraft and in that case, the flutter analysis 

should be conducted using data not available from the original design. 

A typical modem tactical fighter can carry a great variety of wing stores and 

consequently the total number of possible aircraft/store configurations is huge. Therefore, on 

military aircraft the effect of unsteady aerodynamics is computed for both the clean wings (no 

stores) and the wing with tip missiles. Using these two aerodynamic configurations, the flutter 

analysis is probably done on between 300 and 400 selected wing/store configurations. The 

cost for the above effort would increase by several orders of magnitude if wing/store 

aerodynamics were also considered for each of these configurations. In many cases, this is not 

necessary since the store aerodynamics has a small effect on the flutter speed However, there 

are cases where neglecting the store aerodynamics will lead to the overestimation of the flutter 

speed. Therefore, the determination of the cost effectiveness of such analysis is a critical step. 

In this thesis, we first review the most important papers, which have been published in 

recent years to analyze wing-store flutter problems. It is evident from the literature survey that 

most approaches are based on modem CFD (Computational Fluid Dynamics) approaches 

which require extensive computations. 

However, there is still some merit in simplified analyses, which reveals the major 

physical effects. Limiting our approach to low supersonic flight speed we propose to replace 

the multiple stores underneath the wing by a second wing and to apply to a 2-D problem the 

so called " strip theory approach" which reduces the three dimensional flow problem. This 

simplification has the advantage of accounting for the interference effects between two lifting 

surfaces. Moreover, these interference effects will be stronger than those caused by the actual 

stores. The insights which can be attained with such an analysis, therefore will represent an 

extreme limiting case, but it will nevertheless reveal important physical effects. 



The importance of such interference effects is well known in transonic and supersonic 

wind tunnel testing and in the operation of transonic and supersonic compressors. Platzer 

(1973) presented an analytical theory for the analysis of oscillatory supersonic wind tunnel and 

blade interference effects. This theory is based on the assumption that the actual airfoil or 

compressor blade can be replaced by a flat plate and that it oscillates with low frequency. This 

makes it possible to expand the solution in powers of the reduced frequency and to retain only 

the zeroth and first order term. Platzer (1973) showed that this theory provides a convenient 

analytical way to estimate the pitch damping as a function of supersonic Mach number and 

pitch-axis (elastic axis) position. 

In this thesis, we modify Platzer's solution to the case of two airfoils, which are in 

close proximity to each other. Two cases need to be distinguished, namely the one with 

supersonic leading edge locus and the case with subsonic leading edge locus. These two cases 

and the basic theory will be explained in chapter III. The extension of Platzer's theory will be 

given in chapter IV. This is followed by a chapter on the method of characteristic approach, 

which can be used to compare with the analytical results. The final chapter is devoted to the 

flutter analysis. 





II. LITERATURE SURVEY 

EVALUATION  OF  METHODS  FOR PREDICTION AND PREVENTION  OF 
WING/STORE FLUTTER. 

Authors): Pollock, S. J. Sotomayer, W. A.; HuttselL L. J.; Cooley, D. E 

Source: Collect Tech Pap AIAA ASME ASCE AHS Struct Dyn. Mater. Conf. 22nd AIAA 

Dyn. Spec. Conf., April 6-101981, Atlanta, GA, New York, NY, pp. 362-372 

In response to the need to reduce costs and improve safety for flutter evaluation of 

aircraft carrying external stores, the Flight Dynamics Laboratory (FDL) has sponsored several 

efforts in the technical areas of unsteady aerodynamics, flutter prediction, and active flutter 

suppression. This paper discusses each of these three areas as they relate to wing/store flutter 

and presents specific examples from analyses and tests. Steady and unsteady pressure 

measurements were obtained in a wind tunnel at subsonic, transonic and supersonic speeds on 

a fighter wing, tip-mounted launcher and store, and underwing pylon and store. Store flutter 

calculations were performed using both calculated and measured data to determine the 

influence of store aerodynamics on die flutter characteristics. To improve the accuracy and 

reduce the time and costs of flutter evaluations on the many store configurations carried by Air 

Force fighters, the Flight Dynamics Laboratory (FDL) has sponsored several programs in the 

technical areas of unsteady aerodynamics and flutter predictions. Also, the FDL has been 

sponsoring several efforts to explore the potential of active flutter suppression systems using 

feedback control techniques to provide the required stability and to avoid speed placards. 

This paper reports on some of the FDL research related to wing/store flutter 

prediction and prevention. The research includes an unsteady aerodynamic measurement 

program for a representative fighter wing, with and without tip missile and underwing store 

with test data covering the Mach number range 0.6 to 1.35. Flutter analyses based on an FDL 

computer program specifically for use on aircraft with external stores are also described. 

Flutter trends using this computer program are presented for the wing with and without stores 

based on sectional force coefficients from wind runnel measurements and from theoretical 

calculations. A brief description is given of some FDL programs in active flutter suppression, 
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and typical results are presented for wings with stores, which indicate significant potential for 

improvement in flutter speeds. 

Flutter trends for three different fighter wing/ store configurations were calculated 

using the FACES flutter analysis procedure. Use was made of available modal vibration data 

and measured aerodynamic data The predicted Mach number trends gave minimum flutter 

speeds at transonic and low supersonic speeds as would be expected from the trend of 

measured center of pressure and lift-curve slope data. Although the aerodynamics on the tip 

launcher had a somewhat detrimental effect on flutter, the aerodynamics on the tip store had a 

much larger detrimental effect. For the underwing store, the aerodynamic effects were 

beneficial for flutter since the pylon had the effect of decreasing the aerodynamic loading on 

the outer portion of the wing. 



WIND TUNNEL TESTS ON A FIGHTER AIRCRAFT WING/STORE FLUTTER 

SUPPRESSION SYSTEM 

Authors): Turner, M. R. 

Source: AGARD, Rep. on a Coop. Program on Active Flutter Suppression, Paper Presented at 

the Structural and Material Panel Meet., 50th April 1980, Athens, Greece AGARD. 

A special system designed using analytical data was tested on a YF-17 aircraft model in 

the NASA Langley 16' wind tunnel and succeeded in meeting the requirement to increase the 

flutter dynamic pressure by 70% at Mach equals 0. 8. The system was designed using a novel 

procedure, which provides these stability margins, uses minimum control surface movement in 

turbulence, and can be designed using either analytical or empirical data. Two wing tip 

accelerometers and a leading edge control surface were used Empirical open loop transfer 

functions obtained during the test showed that the analytical data overestimated the response 

of the flutter mode to leading edge control surface excitation. 



AERODYNAMICS USING TIME-LINEARIZATION TRANSONIC FLUTTER 

ANALYSIS 

Authorfs): Wong, Y.S., Lee, B.H.K; Murty, H.S. 

Source: Journal of Aircraft, v. 30, January-February 1993, pp. 144-145 

A survey of the progress made in the development of numerical simulation techniques 

for unsteady transonic flow calculations are presented. Computational methods in three- 

dimensional unsteady transonic flows concentrate mainly on the transonic small disturbance 

equation and time-lineraization approach. An algorithm is introduced for solving flutter 

occurrence. 



WING FLUTTER BOUNDARY PREDICTION USING UNSTEADY EULER 

AERODYNAMIC METHOD 

Authors): Lee-Rausch, Elizabeth M.; Batina, John T. 

Source: Journal of Aircraft, v. 32,2 March-April 1995, AIAA, Washington, DC, USA, pp. 416- 

422 

Modifications to an existing three-dimensional, impEcit, Euler/Reynolds-averaged 

Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications 

include the incorporation of a deforming mesh algorithm and the addition of the structural 

equations of motion for their simultaneous time-integration with the governing flow equations. 

This article gives a brief description of these modifications and presents unsteady calculations 

that check the modifications to the code. Euler flutter results for an isolated 45-deg swept- 

back wing are compared with experimental data for seven freestream Mach numbers that 

define the flutter boundary over a range of Mach number from 0.499 to 1.14. These 

comparisons show good agreement in flutter characteristics for freestream Mach numbers 

below unity. For freestream Mach numbers above unity, the computed aeroelastic results 

predict a premature rise in the flutter boundary as compared with the experimental boundary. 

Steady and unsteady contours of surface Mach number and pressure are included to illustrate 

flie basic flow characteristics of the time-marching flutter calculations and to aid in identifying 

possible causes for the increase in the computational flutter boundary. 



APPLICATION OF TRANSONIC SMALL DISTURBANCE THEORY TO THE 

ACTIVE FLEXIBLE WING MODEL 

Authorfs): Silva, Walter A.; Bennett, Robert M 

Source: Journal of Aircraft, v. 32, January-February 1995, AIAA, Washington, DC, USA, pp. 

16-22 

A code, developed at the NASA Langley Research Center, is applied to the active 

flexible wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semispan 

computational model is used for evaluation of symmetric motions, and a full-span model is 

used for evaluation of antisymmetric motions. Static aeroelastic solutions using the 

computational aeroelasticity program-transonic small disturbance are computed. Dynamic 

(flutter) analyses are then performed as perturbations about the static aeroelastic deformations 

and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter 

boundaries that take into account modal refinements, vorticity and entropy corrections, 

antisymmetric motions, and sensitivity to the modeling of the wingtip ballast stores are also 

presented and compared with experimental flutter results. 
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WING-STORE FLUTTER ANALYSIS OF AN AIRFOIL IN INCOMPRESSIBLE 

FLOW 

Autborfs): Yang, Zhi-Chun Zhao, Ling-Cheng 

Source: Journal of Aircraft, v. 26,6 June 1989, pp. 583-587 

The flutter of two-dimensional airfoil with external store is analyzed to investigate the 

effects of pylon stiffness on flutter speed Among the 40 configurations studied, five were 

tested in the wind tunnel to verify the analytical results. The variations of wing-store flutter 

speed with the pylon stiffness can be divided into three types. The curves of the normal and 

flutter frequencies vs pylon stiffness have the same pattern. They can be sketched 

approximately by the aid of the normal frequencies of the two degenerated two-degree-of- 

freedom systems, i.e., and the freely hinged and rigidly connected store cases. A limiting flutter 

speed for very small pylon stiffness is deduced, which is useful to identify which type of flutter 

the configuration studied belongs to. 
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STUDY OF THE EFFECT OF STORE AERODYNAMICS ON WING/STORE 

FLUTTER 

Author(s): Turner, C. D. 

Source: Collect Tech. Pap. ALAA ASME ASCE AHS Struct Struct Dyn. Mater. Conf. 22nd 

AIAA Dyn. Spec. Conf., April 6-10,1981, and 1981, Atlanta, GA, AIAA (CP 812), New York, 

NY, pp. 343-351, Paper: 81-0604 

This study represents the first systematic analytical study of the effect of store 

aerodynamics on wing/store flutter. A large number of wing/store single carriage 

configurations and parameters were included in the study; multivariate analysis techniques 

were used for the first time to analyze wing/store configurations, modal data, and flutter 

results. The results of the multivariate analysis indicate that it may not be possible to develop 

general guidelines, but it is possible to develop specific guidelines for use with a particular 

aircraft. This study was the first attempt to do a systematic analytical study of the effect of 

store aerodynamics on wing/store flutter. To determine this effect flutter analyses were done 

on four aircraft with single carriage of three basic store types. In all 308 configurations were 

analyzed with and without store aerodynamics (tip missiles, tip tanks, and underwing stores). 

The effects of stores have been analyzed. The results of the factor analysis indicate that it may 

not be possible to develop general guidelines, but it is possible to develop specific guidelines 

for use with a particular aircraft The conclusions of the study, as far as it concerns the effect 

of store aerodynamics on wing-store flutter, show that 60% of the tested configurations 

require a change in the flutter speed no more than 7%. Therefore, there is no need to evaluate 

the requirements for aerodynamic modeling of the store. However, for the rest of the 

configurations there is such a need. Moreover, 75% of the last reveal that nonrealistic flutter 

results are obtained without taking into consideration the store aerodynamic. Of course, the 

results of this study represent the configurations that were used to generate the data base. 

12 



AERODYNAMIC MODELING OF AN OSCILLATING WING WITH EXTERNAL 

STORES 

Authors):, Sotomayer W. A., Dusto A. R, Epton MA., Johnson F. T. 

Source: AIAA , New York, NY, pp. 243-252, Paper: 81-0609 

An analysis of the steady and unsteady aerodynamic forces acting on a fighter aircraft 

wing with stores has been done. Computations were performed with paneling methods 

capable of presenting arbitrary aircraft configurations in subsonic and supersonic flow. 

Interference effects from a tip store and an underwing pylon store in varying stages of 

completion were also analyzed. Detailed comparisons between experimental data and 

numerical computations are also made. 

In order to calculate the pressures, forces and moments on an aircraft a numerical 

approach is proposed. Numerical computations are based on solving an integral equation 

formulation of the flow problem being considered. Steady state calculations were done with 

two numerical methods. The first of these is a pilot code developed by Johns. In this method, 

distributions of linearly varying sources and quadratically varying doublets are used to 

represent the aerodynamic surfaces. Wakes are represented by doublets with constant 

streamwise strength and linear variation in the spanwise direction. A method developed by 

Woodward was also employed in making numerical calculations. This method utilizes 

distributions of sources and vortices to represent an aerodynamic surface and the wakes shed 

from various components. 

For unsteady flow, each of the methods makes use of sources and doublets as the basic 

aerodynamic singularities. In a method developed by Johnson for unsteady subsonic flow, 

distributions of sources and doublets are used to represent the aerodynamic surfaces. In the 

wake, doublets of fixed strength and position are used to represent the effects of unsteady 

wake motion. Calculations were also done with a special doublet lattice method. In this 

method, a wing is represented as a sheet of doublets, components such as the fuselage or a 
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store or nacelle can be represented with an axisymmetric distribution of sources with doublets 

on the surface. 

Approximations are imposed on these distributions and on the kernel functions used to 

represent their influences on the flow. These approximations are briefly described along with 

the flow boundary conditions imposed on the aerodynamic surfaces and wakes. 

It is interesting that the small disturbance partial differential equation is being used for 

unsteady inviscid incompressible flow along with the linearized form expressed in terms of the 

velocity potential (p. In addition, simple harmonic motion is assumed as in the thesis. 

cp=Re[<p*e1^   where (p* is a complex quantity. 

Moreover using the Helmoltz equation a more simple relationship is established for (p* with 

the form of an integral equation. An approximate solution of the last equation permits an 

evaluation of the entire flowfield. Numerical solutions of the last equation are achieved 

through an aerodynamic influence coefficient method. The boundary conditions are 

established taking into consideration the configuration of the F-5 aircraft, a relatively old 

aircraft. The aircraft is comprised of the following components: 

1) wing 

2) underwing pylon 

3) missile rack 

4) missile body. 

As in the thesis, the above surfaces are approximated as infinitesimally thin surfaces so 

the thin wing theory applies except the for missile body. The boundary conditions are 

expressed in terms of Taylor series expansion about reference surfaces taking into 

consideration the thickness. 

Initially boundary conditions for steady state flow are made use of and unsteady 

boundary conditions are taken as a perturbation about a steady state condition. In addition, 

variations in Mach number, frequency of oscillations, and interference effects arising from 

component build up are presented. 
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For the wing missile, the boundary conditions are of mixed type (Dirichlet and 

Newman). On the surface of the missile, the boundary conditions are similar to the other parts 

of the aircraft. 

Using a Woodward method, a Efting surface is divided into numbers of aerodynamic 

panels number, containing distributions of sources and vortices. A source distribution 

represents a fuselage [or a pod or external store]. Wing thickness is represented by a Eneady 

varying source distribution in which the strength is equated to the chordwise slope of the wing 

thickness. Camber, twist, and lifting effects are represented by a linearly varying vortex 

distribution where the strength is determined to satisfy tangential flow at panel control points. 

An iterative procedure is employed in solving the boundary value problem. For analysis 

problems, the surface slope is described, and singularity strengths are determined by inverting 

the matrix of aerodynamic influence coefficients. With the strengths of the aerodynamic 

singularities known, the u, v, and w velocity components at a given point may then be 

determined. Pressures, forces, and moments are calculated by numerical integration. 

In the doublet lattice method, the aerodynamic surface is subdivided into a series of 

infinitesimally thin panels. Along the quarter chord line of each of these panels is contained a. 

distribution of acceleration potential doublets. The strength of the distribution is constant but 

is not known. Specification of the normal velocity at a set of points on the surface determines 

the loading on each element Locating the lifting elements at the quarter chord and the 

collocation point of the three-quarter chord of the midspan of each panel usually results in 

reasonable success. An approximation for the Efting pressure coefficients in terms of the 

induced normal velocities may then be found. Lift, moment, roll and generaEzed forces may 

then be calculated. 

Recently, a series of wind tunnel tests were conducted by NLR of the Nethedands with 

sponsorship from the Air Force. These tests involved measurements of steady and unsteady 

pressures and forces on a model of the F-5 wing with external stores. Several external store 

arrangements, which are described and shown in this paper, are compared with numerical 

calculations. Experimental results and numerical calculations show that 

1)   For subsonic flow, the interference due to the tip store is much greater on the 

outer portion of the wing than it is on the inner portions. 
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2) The interference effect due to the pylon store is significant on the lower surface of 

the wing for subsonic flow; there are also noticeable effects on the upper surface of the wing at 

subsonic speeds. 

3) For supersonic speeds, the zone of influence remains localized within the Mach 

cone. 

In general, numerical calculations and experimental results agreed reasonably well with 

each other. 

16 



III.    PROBLEM FORMULATION 

The interference between the airfoil (wing airfoil) and the wing stores is examined by 

making certain assumptions that simplify the problem. The wing airfoil is replaced by an 

oscillating flat plate airfoil and the wing stores by another oscillating flat plate in distance d 

from the wing airfoiL Two cases need to be distinguished, namely: 

SUPERSONIC FLOW PAST TWO 
OSCILLATING AIRFOILS 

WING AIRFOIL 

STORE AIRFOIL 

Fig.l 

1) Supersonic flow past two oscillating airfoils with supersonic leading edge locus 

shown in Fig. 1 (above) 

2) Supersonic flow past two oscillating airfoils with subsonic leading edge locus 

shown in Fig. 2 
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SUPERSONIC 
FLOW PAST TWO 
OSCILLATING 
AIRFOILS 

WING AIRFOIL 

Fig. 2 
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The differences are obvious and will be further analyzed during the examination of 

each case. In both cases multiple reflections occur. As explained in the preface the interference 

between the two airfoils under certain conditions could result in unsteady flow phenomena like 

flutter. 

Therefore, the study of the oscillating airfoils is important in predicting the flutter 

characteristics or dynamic response of the wing airfoil when different stores are attached. For 

the case shown in Fig. 1: 

tan/? < cot« (III-la) 

Where the case shown in Fig. 2 requires: 

tanß > cot« (ni-lb) 

The flow is assumed a non-viscous compressible two-dimensional flow of a perfect gas 

governed by the continuity equation, the Euler, and the energy equation. The continuity 

equation is: 

Dp 
Dt    H ^dx    dy j 

= 0 (HI-2) 

The Euler Equations: 

°l+L?£-=o (oi-3) 
Dt    pdx 

^1+1^=0 (01-4) 
Dt    pdy 

The Energy Equation: 

^. = 0 (01-5) 
Dt 
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Because of the assumption of small amplitude oscillations of the airfoils, all flow quantities are 

considered small perturbations linearly superimposed on free stream quantities. The velocities 

can therefore be written as: 

u  =ux+u (111-6) 

c = c„+c (HI-7) 

v = v (in-8) 

In addition, the pressure and density perturbations are linearly superimposed on freestream 

quantities. Therefore: 

AP=P-P„ <m-9) 

Ap = p-p„ (M-10) 

The local velocity of sound is given by: 

C = 
Up* 
\dPJ 

s=ct (in-ii) 

Furthermore: 

P = const (in-12) 
Pr 

Taking the total differential: 

\dp-yp^dp = 0 (IH-13) 

Or: 
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£«,£ (HI-14) 
dp       p 

So: 

c2 = y- P1145) 
P 

From AA 4318 class notes, the surface boundary conditions will be calculated. Requirement is 

that no flow will penetrate the solid surface of the airfoil resulting in the flow tangency 

condition: 

fi-Vs)-n = 0 (01-16) 

where V,VS are the velocities of the free stream and the surface over which the fluid flowsJf 

the body is described by the equation: 

F(x,y,t) = 0 (111-17) 

then the normal to the surface at any point is given by the following relation: 

-     VF 
n = j^-1 (EII-18) 

VF 

Taking into consideration that the substantial derivative of a surface particle should be zero: 

—+Vs-VF = 0 (111-19) 
dt 

one obtains from (11-16): 

FVF=F,-VF (TII-20) 

and therefore: 
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Df    ßF    — 
_ = _ + F-VF = 0 (111-21) 

Or for two dimensional flow: 

DF    dF      dF     8F    n mT ...  = — + u — + v— = 0 (111-22) 
Dt     dt       dx       dy 

Particles in contact with the surface must have the same normal velocities as the surface. This 

means that the rate of change of F is zero hence: 

— = 0 (IH-23) 
Dt 

For an airfoil the equation of the upper surface can be written as follow: 

F„(x,y,t) = y-yu(.x,t) = o (rn-24) 

Where yu is the distance from the chord line to the upper surface. The equation of the lower 

surface can be written in a similar way: 

FL(x,y,t) = y-yL(x,t) = 0 (111-25) 

Aty=yu: 

£EU_ = -^JL-(U).^L+V = O (in-26) 
Dt dt dx 

Aty=yL: 

^ = _^_(ä).^L + v = 0 (111-27) 
Dt dt dx 

fy±L=fy± = l (111-28) 
dy      dy 
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Thus, the normal flow velocity can be written: 

V = ^L + U^IL (111-29) 
dt        fix 

Applying the assumption of linear perturbation theory one has u = ux+u, therefore: 

dt ox       ox 

v = &,+Um&. + u&:y = Äfcr) (in-31) 
6Y cbc        etc 

Neglecting the higher order terms one obtains: 

v=%+«.^L,y=>'.M an-32) 
of fix 

v^ + n.^.y-J'xM OH-33) 
of cbc 

This normal velocity will be expanded as Taylor series of the normal flow velocity around 

y=0: 

( \     ( ^  \       fiv(x,0v)   y,2 d2(x,0~,t) n„~A, 
v(x,yL,t)= v(x,0+,t)+yL     V'      > + ^ ^-2~I +    OH-34) 

oy l\      o y 

(         \     I «+   \       5v(jc,0~f)   yT
2 d2[x,0~,t) ___._. 

v(*,^,0 = v(x50
+

5?)+^_Li_Li+^ ^-±J+    C111-35) 

Using the assumption of thin airfoil and small linear perturbation theory the higher order 

terms may be neglected and one obtains: 

v{x,yv,t)=v(x,0\t) (m-36) 
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v(x,yL,t)=v{x,Q-,t) (in-37) 

Therefore: 

v(x,0\t)=^ + u^,..y = 0+ an-38) 
at ox 

v(x,0-,t)=^ + u^,y = 0- (in-39) 
ot ox 

For simple harmonic motion of the airfoil: 

yu = At(xy- an-40) 

y^h^y an-4i) 

Therefore, the linearized flow tangency equations can be written: 

v(x,0\t)= [icoha(x) + uß^ial,..y = 0+ (01-42) x        ' fix 

v(x,0\t)=[iayL(x) + ux^]ei<",..y = 0- •   (01-43) 

The above relationships describe the normal velocity on the lower airfoil (store airfoil). 

Similady, one obtains for the upper airfoil (wing airfoil) at y=d: 

v(x,d-,t)= \icohL{x) + u^-\eM,y = cT (01-44) v fix 

if the store airfoil executes a pitch oscillation about x = x0 one has: 

J/ = -0(JC-JCO>"* (01-45) 

v(x,0\t) = [-uj - ico9(x - x^e"" at y = 0+ (01-46) 
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and similarly for the wing airfoil: 

y = -0(x-B-xo¥
{a*+ö) (111-47) 

v(x,d~j) - [- 0{ua cosS - co.smS(x -B-x0}- i0fax siaS + co.cosS(x -B- XQ)}^-' 

(111-48) 
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IV.  ELEMENTARY THEORY 

The case of supersonic leading edge locus will be examined assuming first that both 

airfoils are oscillating slowly in a supersonic flow. The airfoils execute vibrations of identical 

modes and amplitude but with different phase angle 8 between them. It is obvious that the 

flow field is such that no disturbance can propagate upstream of the airfoil leading edges. 

Consequently, the perturbation potential can be written as: 

0(x,y,t)=(p(x,y^)eifct (TV-1) 

where x, y are non dimensional coordinates and t is non dimensional time. The differential 

equation for the perturbation potential in a non-dimensional form then is: 

cota-(p:n-(pyy+2ikM2(pI-k
2M2(p=0 (TV-2) 

The linearized boundary conditions are: 

(f>y(x,0)=v(x) on the lower(store airfoil) at y=0 @V-3) 

where v(x) is the downwash amplitude. 

(py(x,d)=-e' v(x-dtanß) on the upper(wing) airfoil at y=d OV-4) 

where it is assumed that the two airfoils oscillate with a phase angle 8. 

Assuming oscillation around XQ v(x) becomes: 

v(x)=9[l +ik(x—XQ)] and without loss of generality we can set 0=1 (TV-5) 

For small oscillations (low frequency) the potential (p can be expanded and neglecting the 

higher order terms of k one can write: 

q>(x,y,k)=X(x,y)+k¥(x,y) (TV-6) 
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Therefore the differential equation (II-2) becomes: 

cot'cc-X^-X^O (IV-7) 

cota-*Pyy-Tyy+ 2M%=0 (TV"8) 

A general solution of the above system of equations has been given by Sauer (1950). It reads: 

X(x,y)=g(2) (TV-9) 

¥(x,y)=h(z)+iMyg(z)/cosa    where z=x-ycota (TV-10) 

¥(x,y)= h(z)+iMy g(z)/cosa    where z=x+ycota (TV-11) 

h(z) and g(z) are arbitrary functions for positive arguments of z and zero for z<0, it is obvious 

that the expressions of the above functions should be consistent with the last assumption. 

Using the two solutions for left and right running Mach waves in the supersonic flow 

field of slowly oscillating airfoils pressure coefficients can be obtained. In order to do so the 

flow field between the two airfoils has to be divided into several zones. The number of zones 

depends upon A. It is obvious that for A>1 where A=dcota there is one zone along each 

airfoil, for 0.5<A<1 there are two, for 0.33<A<0.5 there are three and so on. In the first zone 

I there is no interference from the airfoil wing (upper wing), which means that the lower airfoil 

(zone I only) does not sense the upper airfoiL In that case, the solution has the form: 

q>(x,y,k)=g(z)+k{h(z)- iMyg(z)/cosa} 

The boundary conditions that must be satisfied at y=0 are: 

Xy=-cota-g'(z)=-l 

xFy=-cotcch'(z)-iMyg(z)/cosa=-4(x -x,,) 

From the last two equations it is obvious that 
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g(z)=2tana 

h(z)=-i2tana(xo+ztan2a/2) 

Since we are assuming a slowly oscillating airfoil, the solution to the PDE has the form: 

(p(x,y^)=g(z)+k(h(z)-iMyg(z)/cosa] 

where z=x-ycota 

In order to calculate the pressure distribution on the upper surface of the lower airfoil in the 

zone I tiie following relation should be used: 

cp=-2fik(p +cpx ] 

Substituting the known functions (p and (px 

(p=ztana+k{-iztana(x0+ztan2a/2)-(iMyztana/cosa)} 

(px=d/dx[ztana +k{-iztana(x0+ztan2a/2) -(iMyztana/cosa)}]= 

=tana-iktana[x0+ztan <x-(Myz/cosa)]= 

=tana-ik[tana(x0+ztan2a)+(y/sinacosa)(sina/cosa)]= 

=tana-ik[tana(xo+ztan a)+(y/cos a)]= 

=tana-ik[tana(xo+(x-ycota)tan a+(y/cos a)]= 

=tana-4k[tana(xo+x tan <x-ytana+(y/cos a)]= 

=tana-ik[tana(x0+ x tan a-ycota]= 

Therefore, the pressure distribution is given by the following relationship: 
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q>=-2{tana^[tana(x0+xtan2a-ycota]+ik[2tana+k{^t2na(x0+ztan2oo^)-iMyztana/ 

cosa}]} 

Taking into consideration that higher order terms of k are neglected the pressure distribution is 

given by the following relationship: 

cp=2tana{-l+ik[xo+x (tan2a-l)+2ycota]} 

and therefore on the airfoil for y=0: 

cp=2tana{-l+ik[xo+x (tan2a-l)]} 

In the zone I* the perturbation potential can also be written directly from Säuert single airfoil 

solution: 

(p(x,y,k) =gi(z1)+k|h1(z1)+ iMyg(z!)/cosa] 

Where: 

Zj=x- A-B +ycota 

The boundary conditions that must be satisfied at y=d are: 

Xy=cota-g'(z1) = -e1 

¥y =cota-hi'(z1)-iMg1(z1)/cosa +iMy gi'(Z])=-ie (x-xo-B): 

After integration and algebraic manipulations: 

gi(z1)=-z1tana-e1 

h1(z1)=iz1tana-e (x0+z1tan2a/2+Md/cosa) 
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where again the condition has been imposed that the functions gifa) and h^Zj) are zero for 

negative and zero arguments. 

Following the same procedure as in zone I, the perturbation potential (p will be 

calculated substituting the known functions gi(zO and h^Zx): 

cp=-z1tanaei5+ik{zitana /(xo+Zjta^a^+Md/cosa^Myzjtanae /cosa} 

(p^-tanae^+iktana ei5 {(xo+Z!tan2a+Md/cosa)-My/cosa} = 

=-tana-ei8+iktana-ei5 {(xo+(x-A-B+ycota)tan2a+Md/cosa)-My/cosa} = 

=-tana-ei5+iktana-ei5{(xo+(x-B)tan2a-Atan2a+ycota+d/sina-cosa) 

-y/sinacosa} = 

=-tana-ei6+iktana-ei5 {(xo+(x-B)tan2a+A-ycota} 

Because d=A/cota,    tana-1 /cosa-sina=cota 

This gives the following result for the pressure distributions on the lower surface of the upper 

airfoil (wing airfoil) in zone I*: 

cp=2tana-ei5-2iktana-ei5{(xo+(x-B)(tan2a-l)+2A-2ycota}= 

cp=2tana.ei5{l-ik{(xo+(x-B)(tan2a-l)+2A-2ycota} 

and therefore at y=d: 

cp=2tana-ei5{l-ik{(xo+(x-B)(tan2a-l)} 
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Assuming that 0.5<A<1 in addition to zones I, I* there are two more zones II, II*. In 

zone II the perturbation potential is due to the initial waves from zones I, I* plus the reflected 

wave at zone ILSo the reflected waves must be determined by adding the functions &{zj) and 

h2(z2). In the zone II Sauefs solution for a single airfoil applies and following the same 

procedure as previously: 

cp(x,y,k) =g(z)+k[h(z)-iM(yg(z)/cosa l+giCzO+kjhiCzO+iMfy&CzO/cosa]+ 

g2(z2)+k[h2(z2)-iMyg2(z2 )/cosa] 

The variable z has the following form: 

z2=x-2A+ycotcc 

This ensures that z2<0 upstream of the leading edge of the airfoil. 

The boundary conditions that must be satisfied at y=d are: 

i8 Xy=-cota-g'(z)+cota-gi'(z1)+cota-g2'(z2)=-e 

t 

^y=-cota-h1Xz)+cota-h1Xzi)+cota-h2'(z2)-iMlg(zhg1(zi)-g2(z2)]/cosa+iMdcotalg1(z1) 

+gi (2i)+gz (z2)]/cosa=-ie1 (x-xo-B) 

After integration and algebraic manipulations similar to the previous calculations for zones I, 

I*: 

g2(z2)=ztana 

h2(z2) =- iz2tana (XQ+ Z2/2tan2a +2Md/cosa) 

Therefore, the perturbation potential is given by the following relationship: 
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4>I=2tana-tana-ei5-iktana(Xo+z2tan2a+2Md/cosa)+iktana-ei5(x0+z1tan2a+Md/cosa) 

-iktana(xo+ ztaa2a )-ikMy[tana-tana+ tana-e   ]/cosa= 

=2tafla-tafla.ei5-iktana[(Xo+22tan2a+2Md/cosa)-ei5(x0+ Zltan2a +Md/cosa)-(x0+ ztan2a 

.s 
)+Mye   /cosa]= 

=2tana-tana-ei5^tana[^ 

+Md/cosa)-(xo+(x-ycota) tan2a)+Mye /cosa]= 

=2tana-tana-ei6-iktana[x0+(x-2A)^^ 

+Atana/sina-cosa)-(xo+x tan2a-ye /sba-cosa)]= 

=2tana-tana-ei5-^ana^^ 

/sina-cosa]= 

=2tana-tana.e^tafla[2x0+2xtan2a+2A^(x0+(x-B+ycota)tan2a+A)+ye /sina.cosa]= 

=2tana-tana.ei5-iktana[(2-ei5 )(x0+xtan2a+A)+ e^CBtanV ycota)]= 

=tana{2-ei5-ik[(2-ei5 )(x0+xtan2a+A)+ei5(Btan2a+ ycota)]} 

This gives the following result for the pressure distributions on the lower surface of the 

upper airfoil (wing airfoil) in zone II: 

Cp=-tana{2-ei8+ik[ei5(xo+ (x-B)(tan2a-l)+2A-2ycota)- 

2(xo+x(tan2a-l)+2A)} 

and for y=d we have: 
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Cp=-tana{2-ei5+ik[ei5(x0+(x-B)(tan2a-l))-2(x0+x(tan2a-l)+2A)} 

In zone II* the perturbation potential is due to the initial waves from zones I, I* plus 

the reflected wave at zone II, II*.So the reflected waves must be determined by adding the 

functions gsfe) and h3(z3). Therefore, in the zone II* Säuert solution for a single airfoil 

applies and following the same procedure as previously. 

(p(x,y,k) =g(z)+k[h(z)-iMfyg(z)/cosa]+gi(zi)+k|h1(z1)+iM6rgi(zi)/cosa]+ 

g3(z3)+k{h3(z3)-iMyg3(z3 )/cosa] 

The variable z3 has the following form: 

z3=x-A—B-ycota 

The boundary conditions that must be satisfied at y=0 are: 

Xy =- cota-g'( z) +cota-gi'( zt) -cota-g/C z3)= -1 

Yy=-cota-h'(z)+cota-h1'(z1)-cota-h3'(z3)-iM|g(z)-gi(z1)+g3(z3)]/cosa=-i(x-xo) 

After integration and algebraic manipulations similar to the previous calculations for zones I, 

I*: 

g3(z3)=-z3tana-e:5 

h3(z3) =iz3tana (xo+z3tan2a/2+Md/cosa)e 

Therefore, the perturbation potential is given by the following relationship: 

<px=tana-2tana-ei5+iktana{e5(xo^^ 

ztan a )-My/cosa} 
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(px=tana-2taQa-ei5+iktana{ei5[xo+(x-A-B+ycota)tafl2a+Md/cosa]e  [xo+ 

(x-A-B-ycota)tan2a +Md/cosa] -(xo+ (x-ycota)tan2a )-My/cosa} = 

^^tana-atana-e^+ikle^tanalxo+Cx-A^tan^+Md/cosal-tanaCxo+Cx-ycota)!^- 

y/cos2a} 

(px=tana-2tana-ei5+ik{ei52tana[xo+(x-B)tan2a-Atan2a+Adtafla/sma-cosa]-tana(x0+ 

(x-ycota)tan2a )-y/cos2a}= 

(pI=tana-2tana-ei5+ik{ei52tana[x0+(x-B)tan2a+A]-tana(x0+(x-ycota)taa2a)- 

y/cos2a} = 

(p^tana^tana-e^+ikfe^tanatxo+Cx-BJtan^+AJ-tanaCxo+xtan^+ycota)} 

, 3 
Because: y/cos ct+ ycotatan a=-y 

In order to calculate the pressure distribution on the upper surface of the lower airfoil in the 

zone II* the following relation should be used: 

cp=-2fik(p+(pj 

Substituting the known functions <p and (px 

=2tana-4tana-ei5-2ik{ei52tana[x0+(x-B)tan2a+A]-tana(x0+xtan2a+ycota)} 

-2ik{ztana-Zltana- ei5- z3tana- ei5}+higher order of k terms which will be neglected 

Therefore: 

Cp=2tana-4tana-ei5-2ik{ei52tana[x0+(x-B)tan2a+A]-tana(x0+xtan2a+ ycota)} 
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-2ik{(x-ycota)tana-(x-A-B+ycota)tana- e -(x-A-B-ycota)tana- el } 

After several relatively simple algebraic manipulations: 

Cp=-2tana[l-2ei5-ik{2ei5[x0+(x-B)(tan2a-l)+2A]-(x0+x(tan2a-l)+2ycota)}] 

Since the pressures have been calculated for the flow field between the airfoils a similar 

approach will be utilized to obtain the pressures on the bottom of the lower airfoil. In that 

case, the solution has the form: 

cp(x,y,t) = g(z) +k{h(z) +iMyg(z)/cosa} 

The boundary conditions that must be satisfied at y=0 are: 

Xy =cota-g'(z)= -1 

¥y=cota-h'(z)+iMg(z)/cosa=-i(x-Xo)   aty=0 

From the last two equations it is obvious that: 

g(z)=ztana 

h(z)=-iztana(x+ztan2a/2) 

The solution again has the form: 

cp(x,y,k)=g(z)+k[h(z)+ iMyg(z)/cosa ] 

where z = x+ycota 

In order to calculate me pressure distribution on the upper surface of the lower airfoil in the 

zone I the following relation should be used: 

cp=-2fik(p+cpx] 
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cp^-ztana +k{-iztana(x+ztan a/2)+(iMyztana/cosa)} 

(px=d/dx[-ztana+k{-iztana(x+ztan a/2)+(iMyztana/cosa)}] = 

=-tana-iktana[x+ztan a-(Myz/cosoc)] = 

=-tana-ik[tana(x0+ztan a)-(y/sinacosa)(sina/cosa)]:= 

=tana - ik[tana(x 0+ ztan a)+(y/cos a)] = 

Therefore, the pressure distribution is given by the following relationship: 

cp=2tanoc{ l-ik[tana(x0+ x (tan a-l)+2ycotcc} 

Using the results for zones IJ*,IIJI* it is possible to calculate the pressure jump across 

the bottom airfoil (wing store airfoil) from the following relationship: 

Acp(x,0)=cp(x,0+)- cp(x,0~) 

Two integration intervals, shown in Fig.4, can be distinguished in the lower airfoil taking into 

consideration that 0.5<A<1: 

1) 0<x<A+B 

2) A+B<x<2A 

In the first integration interval: 

Acp,(x,q)=cp(x,<r)- cp(x,(T)= 

=2tana{ l-ik[tana(x0+x (tan2a-l)+2ycota} 

+2tana{ l-ik[tana(x0+x (tan2a-l)+2ycota} and y=0 

Acp!(x,0)=4tana{ l-ik(xo+ x(tan2a-l)} 

In the second integration interval: 
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Acpn(x,0)= 2tanct{l-ik[tana(x0+ x(tan2a-l)+2ycota} 

+2tana[l-2ei5+ik{2ei5[x0+(x-B)(tan2a-l)+2A]-(x0+x(tan2a-l)+2ycota)}] 

=+2tana[l-2ei5+ik{2ei5[xo+(x-B)(tan2a-l)+2A]-2(x0+x(tan2a-l))}] since y=0 

But e^cosö+isinS and the last expression can be written: 

=+2tana[l-2(cos8+ism8)+ik{2(cos8+ism^ 

This expression is a complex equation with real and imaginary part In order to calculate the 

pitch-damping coefficient only the imaginary part of Acp is needed Therefore one has: 

ImAcpI(x,0)=-4tana(x0+x(tan cc-1)) 
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IniAcpII(x,0)=+2tana[-2sin8/k+2cos5[xo+(x-B)(tan2a-l)+2A]-2(x0+x(tan2a-l))] 

The lift and moment coefficient can be calculated from the following relationship: 

CL=OJ Acpdx 

QpJ 1Acp(x-x0)dx 

By definition: 

CM=0[ Cye +ik C^-] 

Qvt6'= 0^1+ CM6'II
= 

(l/ik)JA+BImAcpI(x,0) (x-x^dx+A+ßl 1ImAcpn(x,0)(x-x0)dx= 

JA+B-4tana(xfl+x(tanVl)(x-xQ)dx+A+Bl2tana[-2sb8/k+2cos8[xo+(x-B)(tanVl)+2A]-2( 

Xo+x(tan2a-l))] (x-x^dx 

The last two integrals will be calculated separately. The first one is: 

2tana[-2x0
2 (A+B)+ x0(A+B)(A+B)-2(tan2a-l)[x0(A+B)2/2-(A+B)3/3)]      (IV-12) 

The second one can be calculated using Maple. The results are a complicate expression. 

Two calculations have been included for the convenience of the reader since in both integrals 

there is a common factor 2tanot. The result is: 

2tana{2x0+tan2a-BiA2B-cos8-m2a-BV3+2tanV3-sm5-AVk-sin8-B2/k+sin8/k+2cos8/3 

+2x0sm8-A/k-2x0
2cos8-B-2x0

2cos8-A+4x0cos8-A+2x0cos8-B+2x0sin8-B/k+2x0
2A+2x0

2B 

+2cosS.tan2aA73+2cos8.AB2-4x(A^^ 

-2tan2a-AB2-2tan2a-AB2-2cos8-tanV 

sb8/k+2x0
2cos8-2x0

2+x0tan2a-A^ 
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3cos8-A2B-2tan2a-A3/3-2tan2a-B3/3+cos6-B3/3+2A3/3-2x0B
2+2x0tan2a-AB 

-2x^2-2x0cos8-BA+x0cos8-tan2a-B2-x0cos8A2-x0cos84an2aA2^ (TV-13) 

Therefore: 

CMe-2tana[-2x0
2(A+B)+x0(A+B)(A+B)-2(tan2a-l)[x0(A+B)2/2-(A+B)3/3)]+ 

2tana{2x0+tan2a-B3A2B-cos8-tan2a-B3/3+2tan2a/3-sin8A2/k-sinS-B2/k+sin8/k+2cos8/3 

+2x0sin8A/k-2x0
2cos8-B-2x0

2cos8A+4x0cos8A+2x0cos8-B+2x0sin8-B/k+2x0
2A+2x0

2B 

+2cos8-tan2aA3/3+2cos8AB2-4x0AB-2sin8AB/k-2/3+4cos8A3/3+2B3/3+2AB2+2BA2 

-2tan2a-AB2-2tan2a-AB2-2cos8-tan2a/3-2x0cos8-x0tan2a-cos8-B-2cos8A-2x0sin8/k+2x0
2 

sin8/k+2x0
2cos8-2x0

2+x0tan2aA2+x0cos8-tan2a+x0tan2a-B2+cos8-Btan2a-2x0cos8-Btan2a+ 

3cos8A2B-2tan2aA3/3-2tan2a-B3/3+cos8-B3/3+2A3/3-2x0B
2+2xotan2a-AB 

^XoA^XoCosS-BA+XoCOsS-tan^B^XoCosS A2-XoCos8-tan2a A2} (IV-14a) 

This is the major result of our investigation. It represents the pitch -damping coefficient of the 

lower airfoil in the presence of the upper airfoil. Note that both airfoils are oscillating in pitch. 

Also the two airfoil oscillation may lag by a phase angle 8. 

If B=0 and 8=180 the above result for the pitch damping coefficient is the same as 

that of an oscillating airfoil mounted close to a stationary airfoil or wall at a distance d/2(M. F. 

Platzer, H. G. Chalkey). As will be shown later the same result can be derived using the 

elementary theory. The pitch-damping coefficient for that case is given by the relation: 

CMe'=-2tana{x0
2(4-2A)-x0(3A2-4A+2+(A2-2)(tan2a-l))+2A3-2A-2(2-A3)/3(tan2a-l)] 

(TV-14b) 

Where A=2hcota, and h is the airfoil distance. 
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Fig. 5 

For die special case of zero stagger B=0 and out-of-phase oscillation d=180 the 

general result equations (TV-12) and (TV-13) simplifies to (IV-14). 
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This agrees with the result previously obtained by Platzer and Chalkey (1972) if 

A=d.cota in replaced by A=2hcota in replaced by A=2hcota used by Platzer and Chalkey. 

Two unstaggered airfoils oscillating out-of-phase are equivalent to a single mounted at a 

distance h=d/2 from a solid wall of a non-moving airfoil. 

It can be seen from Fig. 5 that the interference is highly destabilizing with increasing 

amounts of interference. 

Note that A=0.8 implies a larger amount of interference than A=0.9, for example. At A=0.9 

instability is encountered from low supersonic flow to a maximum of M=3, which at A=0.8 

instability occurs up to much larger supersonic Mach numbers. 

Another interesting case occurs for in-phase oscillation 8=0 of two unstaggered airfoils. The 

instability boundaries are shown in Fig. 6. Again, it is seen that increasing amount of 

interference leads to increasing regions of instability. 
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Fig. 6 shows curves of zero pitch damping coefficient (with torsional stability 

boundaries) for an airfoil mounted close to another airfoil when B=0 but oscillating in phase. 

Following the same procedure a special case of the above will be calculated. In that 

case the upper airfoil is assumed to be stationary while the lower airfoil (store airfoil) oscillates. 

The results will be compared with previous analyses (M.F. Platzer, 1971). 

Starting again with Sauers solution for the slowly oscillating airfoil in unbounded 

supersonic flow it is shown how this solution can be extended to consider the upper airfoil 

(wing) interference. To further simplify the comparison it is assumed that: 

2h 4M^\—<\ 
c 

Therefore, the moving airfoil is mounted at half distance from the stationary upper airfoil in 

compare to the previous analysis. The solution is given by the following set of equations: 

X(x,y)=g(z) 

*P(x,y) =h(z)+iMyg(z)/cosa   where z=x-ycota 

*P=h(z)+iMyg(z)/cosa     where z=x+ycota 

h(z) and g(z) are arbitrary functions for positive arguments of z and zero for z<0, it is obvious 

that the expressions of the above functions should be consistent with the last assumption. 

Using the two solutions for left and right running Mach waves in the supersonic flow 

field of slowly oscillating airfoils pressure coefficients can be obtained. In order to do so the 

flow field between the two airfoils should be divided into several zones. The number of zones 

depends upon A. It is obvious that for A>1, there is one zone along the airfoil, for 0.5<A<1 

there are two. So there are three regions. In the first zone I there is no interference from the 

airfoil wing (upper wing), which means that the lower airfoil (zone I only) does not sense the 

upper airfoiL In that case, the solution has the form: 

cp(x,y,k) = g(z) +k{h(z>- iMyg(z)/cosa} 
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The boundary conditions that must be satisfied at y=0 are: 

Xy =-cota-g'(z)=-l 

lPy=-cota-h'(z)-iMyg(z)/cosa=-i(x -x„) 

From the last two equations it is obvious that: 

g(z)=ztana 

h(z)=-4ztana(x0+ztana/2) 

Assuming a slowly oscillating airfoil, the solution to the PDE has the form: 

<p(x,y,k) =g(z)+k[h(z)-iMyg(z)/cosa ] 

When z = x-ycota 

In order to calculate tibe pressure distribution on the upper surface of the lower airfoil 

in the zone I the following relation should be used: 

cp=-2[ik(p+(px] 

Substituting the known functions (p and (px 

(p=ztana +k{-iztana(x0+ztan2oc/2)-^Myztana/cosa)} 

(px=d/dx[ztana +k{-4ztana(xo+ztan2a/2) -(iMyztana/cosa)}]= 

= tana-iktana[x0+ztan2a-(Myz/cosa)]= 

= tana-ik[tana(x0+ztan2a)+(y/sina-cosa)(sina/cosa) ]= 

=tana-ik[tana(x0+ztan a)+(y/cos a)]= 
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=tana-ik[tana(x0+(x-ycota)tan2a+(5r/cos a)] - 

=tana-ik[tana(xo + x tan ct-ytana+(y/cos a)] = 

=tana-ik[tana(x0+ x tan a-ycota] 

Therefore, the pressure distribution is given by the following relationship: 

cp=-2{tana^[tana(vHrt^ 

cosa}]} 

Taking into consideration that higher order terms of k are neglected the pressure 

distribution is given by the following relationship: 

cp=2tana{-l+ik[x0+ x (tan2a-l)+2ycota]} 

Soaty=0 

cp=2tana{-l+ik[x0+ x (tan2a-l)]} 

In the 2one II: 

cp(x,yjk) =g(z) +k[h(z)-iM(yg(z)/cosa]+g1(z1)+k[h1(z1)+iM(yg1(z1)/cosa] 

where: • 

Zi=x-A+ycota 

In order to calculate the functions g(z),h(z) the boundary conditions will be applied 

The boundary conditions that must be satisfied at y=h are: 

Xy =-cota-gf (z)+cota-g!'( Zj) = 0 
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Ty=-cota-h'(z)+cota-h1'(z1)-iMIg(z)-g1(21)]/cosa+iMAcota[g (z)+& (z,) ]/2cosa= 0 

After algebraic manipulation: 

cp=-2tana{-l+ik[x0+x (tan2a-l)]+2A-2ycota} 

For the region III: 

<p(x,y,k) =g(z)+k[h(z)-iM(yg(z)/cosa ]+gi(zi)+k[hi(z1)+ iM(5rgi(z1/cosa]+ 

g2(z2)+k|li2(z2)-iMyg2(z2)/cosa] 

where: 

Z2=x-A-ycota 

The boundary conditions that must be satisfied at y=0 are: 

Xy =- cota-g'( z) +cota-g!'( zt) -cota-g/C z$= -1 

xPy=-cota-h'(z)+cota.h1
,(z1)-cota-h2'(z2)-iM[g(z)-g1(z1)+g2(z2)]/cosa =-i(x-xo) 

After several manipulations: 

cp=-2tana{3+ik[-3xo+ (3x-2A) (tan2a-l)]-2A/cos2a} 

Using the results from the three zones, the pressure jump across the lower blade can be 

calculated from the following relationship 

Acp(x,0)=cp(x,0+)- cp(x,0") 

In order to calculate the cp(x,0~) previous results will be used (two airfoil oscillating case) for 

the lower surface of the store airfoil(store): 
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qp=2tana{l+ik[xo+x(tan2a-l)]} 

SoAcp(x,0)=cp(x50
+)- cp(x,Cf) 

Two integration intervals can be distinguished in the lower airfoil taking into consideration that 

0.5<A<1: 

1) 0<x<A 

2) A<x<2A 

In the first integration interval is: 

AcpI(x,0)=cp(x,0+)- cp(x,0~)= 

=-2tana{ l-ik[tana(x0+ x(tan a-1)}= 

=-2tana{l-ik[tana(xo+ x (tan2a-l)} and y=0 

Acpi(x,0)=4tana{ l-ik(xo+ x (tan2a-l)} 

The latest expression is a complex number with real and imaginary part. In order to calculate 

the pitch-damping coefficient only the imaginary part of Acp is needed. Therefore: 

ImAcpI(x,0)=4tana{-x0+ x (tan2a-l)} 

In the second integration interval: 

ImAcpn(x,0)=+2iktana[-4xo+(4x-2A)(l-tan2a)-2A/cos2a] 

The lift and moment coefficient can be calculated from: 

CL=OJ Acpdx 

CM=OJ ^cpfc-x^dx 

By definition: 
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CM-öolOie+ikCMe'] 

QJ6'
=
 Qwe'i+Que'ii 

For the purpose of the analysis, only the pitch-damping coefficient is required. Therefore, in 

order to facilitate the calculations only the necessary imaginary part of the Q^ will be 

calculated. 

0*9'= Ctffi+Ctffn =(l/ik)JAImAcpI(x,0) (X-X^X+AJ ^mAcpnfoO) (x-Xo)dx= 

JMtoa(x0+x(tan2a-l)(x-x^dx+AJ12iktana[-4x0+(4x-2A)(l-tan2a)-2A/cos2a](x-x^ 

=-2toa{x0
2(4-2A)-x0(3A2-4A+2+(A2-2)(tan2a-l))+2A3-2A-2(2-A3)/3(tan2a-l)] 

The above result is in agreement with the previous results derived by M. F. Platzer and 

H.G. Chalkey but the last one has been derived using the elementary theory. 

Therefore the elementary theory mat has been developed predicts the above result as a 

special case for B=0 and 8=180° and represents for mat case the pitch damping coefficient of 

an oscillating airfoil mounted close to a stationary airfoil or wall at a distance h/2. It is also the 

same result of the analysis of supersonic flow past a slowly two-dimensional airfoil in a wind 

tunnel with porous wall as presented by M.F. Platzer, 1971. 
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The second general case that will be examined in the thesis is shown in fig. 2. In that 

case, the Mach cone is wide enough to include the wing airfoiL 

Shock 
SUBSONIC 
LEADING EDGE 
LOCUS 

Wing Airfoil 

Reflected 
Shock Waves 

Store Airfoil 
B+3A 

Fig.7 

Using Säuert solution as previously and dividing tie flowfield in zones as depicted in 

Fig.7 the perturbation potential <p in zone I is given: 

cp(x,y,k) =g(z)+k[h(z)+ iMyg(z)/cosa] 

Where: 

z=x-A-B +ycota    at y=h 

The boundary conditions that must be satisfied at y=h are: 

Xy=cota-g'(z) = -e i5 
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.S, ¥y = cotoc-h'( z)+iMg(z)/cosa+iMy g'(z)/cosa =-ie (X-XQ-B) 

After integration and algebraic manipulations: 

g(z) =-ztanoc-el 

h(z) =iztana'e (X(,+ztan2cx/2+Mh/cosa) 

Where again the condition has been imposed that the functions g(z) and h(z) are zero for 

negative and zero arguments. 

<j>x=-tana-e+iktana-e^i5{(x0+z1tan2a+Mh/cosa)-My/cosa} 

= -tana-ei5 +iktana-ei5{(xo+(x-A-B+ycota)tan2a+Mh/cosa)-My/cosa} 

=tana-e -iktana-ei5 {(xo+ (x-B)tan2a-A tan2a+ycota+h/sina-cosa) 

y/sina-cosa} = 

=-tana-e +iktana-e  {(xo+(x-B)tan2a+A-ycota} 

Because h=A/cota,    tana-l/cosa-sina=cota 

This gives die following result for the pressure distributions on the lower surface of the upper 

airfoil (wing airfoil) in zone I: 

cp =-2[ik(p +<pj 

cp=2tana-ei5-2iktana-ei5 {(xo+(x-B)(tan2a-l)+2A-2ycota}= 

cp=2tana-ei5{l-4k{(xo+(x-B)(tan2a-l)+2A-2ycota} 
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cp= 2tana-ei6 {l-ik{(xo+(x-B)(tan2a-l)} 

In order to calculate the pressure on the upper surface of the wing airfoil the same approach 

will be followed and the result is: 

cp= 2tana.ei5{-l+ik{(xo+(x-B)(tan2a-l)} 

To calculate the Acp of the upper airfoil (wing airfoil) in the interval of 2one I we have to 

calculate: 

Acp(x^)=cp(x5h")-cp(x^i+) 

Therefore: 

Acp= 4tana-ei6{l-ik{(xo+(x-B)(tan2a-l)} 

Following the same arguments as previously for the zone II: 

zx=x-A-ycota -B 

gi(zi) =zitana-(l-e10) 

The second boundary condition gives: 

-cota-h1'(z)+cota-h'(z)-iM[-g(z)+gi(z1)]/cosa=-i(x -XQ-B-A) 

^otaV(2)+icota.tanaei^x0+ztan2a+Mh/coSa)^z1tana/cosa+ i(x -xo-B-A)=0 

Using the following trigonometric identity: 

ztan2a-z/cos2a=-z we have: 

52 



hi(za) =iz1tana{(x0+ z1tan2a/2)(-l+ ei5)+Mh e^/cosa}. 

In order to calculate the pressure distribution on the upper surface of the lower airfoil in the 

zone II the following relation should be used: 

cp =-2[ik9 +(px] 

Substituting the known functions (p and (px 

(p=z1tana-(l-e1^-ztana-e1 +k{iz1tana{x0+z1tan2a/2)(-l+ej+Mhe /cosa}+iztana'-e (XQ+ 

ztan2a/2 +Mh/cosa)} 

(p^d/dx^itana^l-e1 j-ztana-e1 +k{iz1tana{x0+ z1tan2a/2)(-l+e,j+Mhe1 /cosa}+ iztana 

ei5 (xo+ ztan2a/2 +Mh/ cosa).}]= 

=tana-(l-e1^-tana-e1 +k{itana{(x0+z1tan2a)(-l+e^+Mhe /cosa}+ itana-e■ (x„+ ztan2a 

+Mh/ cosa)} 

= tana-(l-2ei5)+kitana[{(xo+ z^aX-l+e^+Mhe^/cosaJ+e*5 (xo+ ztan2a+Mh/cosa)] 

Taking into consideration that y=0 we have: 

=tana{(l-2eiS)+ki[(xo+ Z!tan2aX-l+2ei5)+2Mhei5/cosa]} 

cp =-2[ik(p +(pI]=-2[tana-(l-2ei5)+kitana{(xo+ Zitan2a- z1l)(-l+2eiS)+ 2Mhei5/cosa}] 

The last relation gives the cp on the upper surface of the lower airfoil (store) in the zone ILIn 

the zone III a similar approach will be used to calculate the b^Zj) and %faz)' The variable Z2, 

taking into consideration the fig. 2, is given by the following relationship: 

Z2=x-2A+ycota -B 
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£ 

The first boundary condition that must be satisfied at y=h is: 

&.(&) =z2tana-(l-0 

The second boundary condition gives: 

-cota-h1'(z^+cota-hXz)+cota-h2'(z^+iM|g(z)-g1(zO+g2(z^]/cosa-hMhcota[g'(z)+gi'(zi) 

.SJ 

+g2'(z2)]/cosa=-i(x-xo-B-2A) el 

cota-h2'(z2)+icota-tana(x0+z2tan2a)-e Mz2tana/cosa4iMh(2-3e1^/cosa+i(x-x0-B-2A)e1 

=0 

•5\ J\ J\ 
cota-h2'(z2)=-i(x0+z2tan2a)+e1 z2/cos2a- iMh(2-3e^/cosa-i(z2 -XQ) e 

h2(z2)=-iz2tana (x0+z2tan2a/2)(l-e1^- iMh tana Z2 (2-3e^/cosa 

In a similar manner, as previously, the cp can be calculated: 

(p=z1tana<l-e^ztana-ei5+z2tana<l-eiVk{^it^a{^+zi^^(_1+e^+Mhei5/cosa} 

+iztana-ei5(x0+ztan2a/2+Mh/cosa)+itana(x0+z2tan2a/2)(l^1^-iMhtanaz2(2-3e^/cosa 

~»My[g(z)-gi(zi)+g2(z2)]/cosa} 

(pI=tana<2-3eiV^t^a[(^+zi^2a)(~1+e^+I^e^/cosa}+e^^+z^2a+Mh/cosa)+ 

(xo+ z2tan2a)(-ei8+l)-Mh(2-4ei5)/cosa] 

(pI=tana-(2-3eiVkitana[(xo+zitan2a) e -Mh(2-6ei5)/cosa] 

In order to calculate the pressure distribution on the upper surface of the lower airfoil in the 

zone II the following relation should be used: 

54 



cp=-2Jikq>+<Px] 

Substituting thie known functions (p and (px 

cp=-2iktana-[(2-3eiV^(2-3eiV(^+z2^2a)ei5-Mh(2-6ei8)/cosa] 

=-2iktana-[(2-3eiV^(l-eiV(^+(z2-1)tan2(X)ei8-Mh(2-6^5)/cosa] 
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V. METHOD OF CHARACTERISTICS 

In the method of characteristics, it is desirable to define the coordinate system in such 

a way that all-possible discontinuities could occur across. Along this coordinate system, the 

equations of motion of the flow field can then be treated as ordinary differential equations that 

are solvable by classical or numerical techniques. 

To obtain the equations in this coordinate system (the characteristic directions) in the 

(x,y) plane, the equations of motion are written in terms of the arbitrary intersecting 

coordinates: 

# = %**y) (v-1) 

And 

7j = jj(x,y) (V-2) 

If the first derivatives of the dependent variables, u,v,p with respect to | are made 

indeterminate across lines of T| = constant, and the first derivatives of the dependent variables 

with respect to T| are made indeterminate across lines of £= constant, then any possible 

discontinuities in the first derivatives will occur across these lines. These lines are then the 

characteristics and their equations are obtained in the evaluation of the indeterminacies. 

Consider first, two-dimensional, steady flow. The governing equations of motion are the 

continuity equation: 

MeS+^Lo (V-3) 
dx &y 

The Euler equation becomes: 
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-du      du    1 dp    A u—+v—+ — = 0 
dx      dy    p dx 

(V-4) 

-du      dv    1 dp    A w—+v—+ — = 0 
cbc      dy    p dy 

(V-5) 

In addition, the energy equation becomes: 

- ds      ds    . 
«—+v— = 0 

dx      dy 
(V-6) 

Along a streamline: 

-dp      dp    -2-dp      dp. 
u—+v—= c [M—+v-H 

&    öy        ax    av 
(V-7) 

Substituting the above into the continuity equation one obtains: 

du    dv 

dx    dy -2 
C 

-dp      dp 
U-Z- + X — 

dx      dy 
(V-8) 

In terms of the new coordinates: 

p&K* +p£yvi +^-[< +v£y]ps = -Pn^n ~PI?*, —K +V^K 

In similar fashion the Euler equations become: 

(V-9) 

p^+v^fe + ^p^-pfa+VTjyfc-p^ (V-10) 

pfc + v£,^ + £^ = -p$nx +vrjy^-pnVx (V-ll) 
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The last three equations form a system of three equations inu$,v4,p£. Solving for p^ 

by Cramer's rule and taking into consideration that p5 is indeterminate across TI both 

determinants in numerator and denominator should vanish. Therefore, from the denominator 

determinant we have: 

The solution to the above equation gives the equations of all three characteristics in the 

physical (x,y) plane: 

^=*=tan<T (V-13) 
dx    u 

^ = tan(C±a) (V"14) 
dx 

Where C is the angle the streamlines makes with x-axis and a is the Mach angle. The first 

equation describes a streamline while the last one describes left and right running Mach lines. 

The compatibility equation for a, v,/? along £ andr] characteristics can be obtained by setting 

the numerator of p^ equal to zero: 

du      dv _ 1    ^   dp    n AT 1 c\ v u—+— cotor—= 0 (.V-i:>; 
drj      dij    p        drj 

The above relation must be satisfied along characteristics (£;n)- 

According to Teipel (1962) the unsteady flow over a flat plate can be treated in a similar 

fashion. In order to facilitate the calculations the continuity and Euler equations can be 

rewritten using the local sonic velocity: 

P 
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So canceling higher order terms the continuity equation becomes: 

2   8c      2       de       du       dv    _ MATS 
+ r«„—+c„ — + c— = 0 (V-17) 

y-\dt    y-\     dx        dx       dx 

In a similar, fashion the Euler equations become: 

du      2       de        du    A Ar 1 Qx 
— + c,—+w„ — = 0 (V-18) 
ft    7-1    &        dx 

dv       2        dc        dv    n nr ia\ —+ c«,—+ux — = 0 (V-19) 
dt    y-\    dx        dy 

A system of three differential equations has been formed for three unknowns u,v,c 

To simplify the calculations with the assumption of harmonic oscillation we introduce the 

amplitude functions: 

U(x,y)e"*=^-^ (V-20) 

V(x,y)e"" =   .   l      — (V-21) 

C(x,y)e'°> = -2=-L^-^ (V-22) 

Therefore, the continuity and Euler equations become: 

^L+4]^ZlK+M
2—+ikM2C = 0 (V-23) 

dx dy dx 

<*L+<?£ + ikU = 0   ■ (V-24) 
dx     dx 
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dv      l    de   ....  n —+  . —+ikV = 0 
dx    ^}M2-ldy 

(V-25) 

With the above variables the compatibility relations for the above system of equations are: 

+ ik '^ih^0-^ = o (V-26) 

rdV\ v-ih^c-u\ = 0 (V-27) 

—     + —    +ikU = Q 
& Jstr      \ dx Aft- \ °X Jstr 

(V-28) 

Taking into consideration the irrotationality: 

du    dv _, 

dy   dx 
(V-29) 

The non-dimensional system of equations can be written as: 

dU ■dv   ,x,ac 
+ VÄ^-1—+M2 — + ikM2C = 0 

dx dy dx 
(V-30) 

dU   dC   '.._.    . 
 +—+ikU = 0 
dx     dx 

(V-31) 

(V-32) 

Transforming the last system of equations to the new coordinate system (£,ri): 

( 

dU) 

dx 

dV M 
+ Ä  "    (tf-C)=0 

h dx);      M2-l 
(V-33) 
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\dx)n   ^dxjn      M
2-l 

(«L)   JK)   + ikU = 0 (V-35) 
v^A* ydx)str 

The last system of equations can be solved using finite differences. The values of U,V 

and C on the upper and lower surfaces of the airfoils can be calculated using the results of the 

Elementary Theory (Chapter ID). The following relations apply: 

U = <pXi V = tan cupy, C = -[q>x + ik<p\ (V-36) 

Using the results of chapter III the following results apply to zone I: 

Uj = tana|l-i£(jc0 + jctan2a + >'cota)] (V-37) 

T Ml 
VT = tana -1 + ik(x - x + y{cota + )) (V-38) 1 i ° cosa 

Cj = tana[-1 + ik(xQ + *(tan2 a -1) + 2>>cota)]J (V-39) 

The last three equations represent the values of the parameters on the upper surface of the 

lower airfoil in the interval of the zone I. The last equation gives the pressure distribution and 

it is half the value of the actual pressure distribution coefficient Following a similar approach 

the following results apply in the zone II* for the pressure coefficient 

C = 2{2tanaelS - tana + z£tana|>0 + *(tan2 a -1)] - 

like15 tana[je0 + (tan2 a - !)(* - B) + 2dcota]} 
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VI. FLUTTER ANALYSIS 

The lift and moment are given from the following relations: 

L = ±pU2\cpdx (VI-1) 
2        o 

i i 

M = -pU2jCp(x-x0)dx (VI-2) 

And 

2 (d(P . TTd(PS Cp = -ArZL+U^L\ (VI-3) 
y    u2\dt      dx) 

While 

cL=$Acpdx (VI-4) 
o 

cM=j(x-x0)Acpdx (VI-5) 
0 

And defining: 

cm=0Qlcm9+ikcmff] (VI-6) 

The last relations have been used in the elementary theory as shown in chapter III, and 

are a result of the following analysis. To compute the non dimensional lift and moment acting 

on the store airfoil the non-dimensional pressure coefficient P as defined in problem 

formulation last equation will be utilized and consequently the lift and moment can be written 

as follows: 
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L = \ {P(*,0+) - P(x,0-)}ix (VI-7) 
o 

M = ]{p(x,0+)-P(x,0-)Yx-x0)dx (VI-8) 
o 

And: 

P(x,y) = yM2C(x,y) (VI-9) 

Where: 

P(x,y)el,* = P   Pe°, (VI-10) 

Although in the thesis only pitching, oscillation is considered the more general case 

include plunging oscillation also. In that case, Garrick and Rubinow's (1946) method of 

expressing lift and pitching moment is used: 

L = -±-px~cuJk2e""[^(L1 +iL2) + 0o(L3+iL4)] (VI-11) 

M = -jpJ^hy^^-iMi +iM2) + 0O(M3 + iM4)]       (VI-12) 

Where: 

,     coc        ~    «, 
k = — ande = 2o 

For a single degree of freedom as in that case the flutter analysis is much easier, and the 

equation of motion is: 

Ie# + (} + ig)CeO = Me (VI-13) 
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The sum of the moments of inertia about the elastic axis is: 

Mj = -Ie0 (VI-14) 

In addition, the elastic restoring moment is: 

MR=-(l + ig)Cs0 (VI-15) 

Moreover, the aerodynamic pitching moment about the elastic axis is: 

Me =~pScuJk2ei°*0o(M,+iMi) (VI-16) 

Since: 

0 = 0oe
i(ät (VI-18) 

0 = -to20oe
iat (VI-19) 

So the equation of motion becomes: 

eM[-Ie(D% + (l + ig)C00o = --^pJc\2k2ei°*0,{M, +iM4)   (VI-20) 

Separating the equation in real and imaginary parts gives: 

-Iea
2 +Ce + -pJ4a>2M3 = 0 (VI-21) 

gCe+±pjWM4=0 (VI-22) 

Using the results of Garrick and Rubinow (1946): 

QeX - jure
2 + M3 = 0 (VI-23) 
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M4+gQ0X = O (VI-24)" 

In order to solve the single degree of freedom problem it is necessary to obtain values 

of M4 as a function of k until the second equation is satisfied. The value of M3 for that k is 

then used in the first equation to determine if X is reasonable: 

jr = l-—i->0 (VI-25) 

The non-dimensional flutter frequency is: 

C0F        1 

CO 0 ^ 
(VI-26) 

Accordingly the speed is: 

U* 1 
ceo, e kyfX 

(VI-27) 

Aerodynamic instability (flutter) occurs when M4< 0 while the L, M coefficients are given by 

the following 

2    ' ' 
L = L3 + iL4 = —T { JC(X,0

+
 )dx - jC(x,0~ )dx} (VI-28) 

"•0 0 

M = M3 + iM4 = ~{JC(jt,0+ )(x - x0 )dx - jC(x,0~ )(x - x0)dx}    ^"^ 
*■    0 0 

And defining the following quantity, the non dimensional pitching moment, the analysis can 

be gready facilitate: 

Cm=0o[cm0+ikcm0,]e'a .  (VI-30) 
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Cmff ~ --kMA (VI-31) 

Cm6 ~ --£
2M, (VI-32) 
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VII. CONCLUSIONS 

-cade IT T; °     ' aPpr0adl to ^ "* — "»*»«">-** -cade and of arfods « ™d ^ was „^ fc fc ^ ^ 

P™»» - «* <*~ The ahMs rould os*ee in ^ ^ „ ^ £ 

perturbation theorv. 

Two.cases needed „ be distinguished, flamdy ^ ^ 
*» ve.ua subs0flk ^ edge loaK fc ^ fomer 4e «   * 

^WerarfodiswiÄAe^chwedgeofthebwerÄfoil 
Fc^eca.eofaup^,,,^^^^^^^^^ 

z 7p ?"* ""■* °f Ae te° * ** - *°* - °f oif- 

Fu^heenao*, d>e analysis of «he subsonic .eadbg edge pnoblena was begun and the 

character procedure was described ^ ^ ^ ^ ^ ^^ ^ 
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